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Mathematical Models - Deterministic Model

By this we shall mean a model which stipulates that the conditions under
which an experiment is performed determine the outcome of the
experiment.

For example, if we insert a battery into a simple circuit, the mathematical
model which would presumably describe the observable flow of current
would be I = E/R, that is, Ohm’s law.
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Mathematical Models - Deterministic Model

The model predicts the value of I as soon as E and R are given. Saying it
differently, if the above experiment were repeated a number of times, each
time using the same circuit (that is, keeping E and R fixed), we would
presumably expect to observe the same value for I .

Any deviations that might occur would be so small that for most purposes
the above description (that is, model) would suffice. The point is that the
particular battery, wire, and ammeter used to generate and to observe the
current, and our ability to use the measuring instrument, determine the
outcome on each repetition.
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Probabilistic Models

There are certain factors which may well be different from
repetition to repetition that will, however, not affect the outcome
in a noticeable way. For instance, the temperature and humidity in the
laboratory, or the height of the person reading the ammeter can reasonably
be assumed to have no influence on the outcome.

There are many examples of “experiments” in nature for which
deterministic models are appropriate.

However, there are also many phenomena which require a different
mathematical model for their investigation.

These are what we shall call nondeterministic or probabilistic models.
Another quite commonly used term is stochastic model.

A probabilistic model is a mathematical description of an uncertain
situation.
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Mathematical Models - Radioactive Material Emitting
Particles

Suppose that we have a piece of radioactive material which is emitting
α-particles.

With the aid of a counting device we may be able to record the number of
such particles emitted during a specified time interval. It is clear that we
cannot predict precisely the number of particles emitted, even if we
knew the exact shape, dimension, chemical composition, and mass of the
object under consideration. Thus there seems to be no reasonable
deterministic model yielding the number of particles emitted, say n, as a
function of various pertinent characteristics of the source material. We
must consider, instead, a probabilistic model.
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Mathematical Models - How much precipitation will fall?

For another illustration consider the following meteorological situation.
We wish to determine how much precipitation will fall as a result of
a particular storm system passing through a specified locality.
Instruments are available with which to record the precipitation that
occurs.

Meteorological observations may give us considerable information
concerning the approaching storm system: barometric pressure at various
points, changes in pressure, wind velocity, origin and direction of the
storm, and various pertinent high-altitude readings. But this information,
valuable as it may be for predicting the general nature of the precipitation
(light, medium, or heavy, say), simply does not make it possible to state
very accurately how much precipitation will fall.

Again we are dealing with a phenomenon which does not lend itself to a
deterministic approach. A probabilistic model describes the situation more
accurately.
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Probability

Probability is a very useful concept, but can be interpreted in a
number of ways. As an illustration, consider the following.

A patient is admitted to the hospital and a potentially life-saving drug is
administered. The following conversation takes place between the nurse
and a concerned relative.

RELATIVE : Nurse, what is the probability that the drug will work?
NURSE : I hope it works, we’ll know tomorrow.
RELATIVE : Yes, but what is the probability that it will?
NURSE : Each case is different, we have to wait.
RELATIVE : But let’s see, out of a hundred patients that are treated under similar conditions,

how many times would you expect it to work?
NURSE : I told you, every person is different, for some it works, for some it doesn’t.
RELATIVE : Then tell me, if you had to bet whether it will work or not, which side of the bet would you take?
NURSE : I’d bet it will work.
RELATIVE : OK, now, would you be willing to lose two dollars if it doesn’t work, and gain one dollar if it does?
NURSE : What a sick thought! You are wasting my time!
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Probability

In this conversation, the relative attempts to use the concept of probability
to discuss an uncertain situation. The nurse’s initial response indicates
that the meaning of “probability” is not uniformly shared or understood,
and the relative tries to make it more concrete.

The first approach is to define probability in terms of frequency of
occurrence, as a percentage of successes in a moderately large
number of similar situations. Such an interpretation is often
natural. For example, when we say that a perfectly manufactured
coin lands on heads “with probability 50%,” we typically mean
“roughly half of the time.”
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Probability

The last part of the earlier conversation was an attempt to infer the
nurse’s beliefs in an indirect manner. Since the nurse was willing to accept
a one-for-one bet that the drug would work, we may infer that the
probability of success was judged to be at least 50%.

Had the nurse accepted the last proposed bet (two-for-one), this would
have indicated a success probability of at least 2/3.
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Summary

Let us simply state that in a deterministic model it is supposed that the
actual outcome (whether numerical or otherwise) is determined from the
conditions under which the experiment or procedure is carried out. In a
nondeterministic model, however, the conditions of experimentation
determine only the probabilistic behavior (more specifically, the
probabilistic law) of the observable outcome.

Saying it differently, in a deterministic model we use “physical
considerations” to predict the outcome, while in a probabilistic
model we use the same kind of considerations to specify a
probability distribution.
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Introduction to Sets

In order to discuss the basic concepts of the probabilistic model which we
wish to develop, it will be very convenient to have available some ideas
and concepts of the mathematical theory of sets.

A set is a collection of objects.

The individual objects making up the collection of the set A are called
members or elements of A.

We define the universal set as the set of all objects under consideration.
This set is usually designated by U.

We define the empty or null set to be the set containing no members. We
usually designate this set by Ø.
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Introduction to Sets

We say that two sets are the same, A = B, if and only if A ⊂ B and
B ⊂ A. That is, two sets are equal if and only if they contain the same
members.

1. For every set A, we have Ø ⊂ A.

2. Once the universal set has been agreed upon, then for every set A
considered in the context of U, we have A ⊂ U.
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Introduction to Sets

Next we consider the important idea of combining given sets in order to
form a new set. Two basic operations are considered.
We define C as the union of A and B (sometimes called the sum of A and
B) as follows:

C = {x : x ∈ A or x ∈ B (or both)}.

We write this as C = A ∪ B. Thus C consists of all elements which are in
A, or in B, or in both.

We define D as the intersection of A and B (sometimes called the
product of A and B) as follows:

D = {x : x ∈ A and x ∈ B}.

We write this as D = A ∩ B. Thus D consists of all elements which are in
A and in B.
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Introduction to Sets

Finally we introduce the idea of the complement of a set A with respect
to the universal set U as follows: The set, denoted by A, or Ac , consisting
of all elements not in A (but in the universal set U) is called the
complement of A. That is, A = {x : x 6∈ A}.

A graphic device known as a Venn diagram can be used to considerable
advantage when we are combining sets as indicated above.

Note that in describing a set (such as A ∪ B) we list an element
exactly once.
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Introduction to Sets

The above operations of union and intersection defined for just two sets
may be extended in an obvious way to any finite number of sets. Thus we
define A ∪ B ∪ C as A ∪ (B ∪ C ) or (A ∪ B) ∪ C , which are the same, as
can easily be checked. Similarly, we define A ∩ B ∩ C as A ∩ (B ∩ C ) or
(A ∩ B) ∩ C , which again can be checked to be the same. And it is clear
that we may continue these constructions of new sets for any finite
number of given sets.

We asserted that certain sets were the same, for example A ∩ (B ∩ C ) and
(A∩B)∩C . It turns out that there are a number of such equivalent sets,
some of which are listed below. If we recall that two sets are the same
whenever they contain the same members, it is easy to show that the
assertions stated are true.
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Introduction to Sets

(a) A ∪ B = B ∪ A,

(b) A ∩ B = B ∩ A,

(c) A ∪ (B ∪ C ) = (A ∪ B) ∪ C ,

(d) A ∩ (B ∩ C ) = (A ∩ B) ∩ C .

We refer to (a) and (b) as the commutative laws, and (c) and (d) as the
associative laws.

There are a number of other such set identities involving union,
intersection, and complementation. The most important of these are listed
below. In each case, their validity may be checked with the aid of a Venn
diagram.
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Introduction to Sets

(e) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ),

(f) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ),

(g) A ∩Ø = Ø,

(h) A ∪Ø = A,

(i) (A ∪ B) = A ∩ B,

(j) (A ∩ B) = A ∪ B,

(k) A = A.

We note that (g) and (h) indicate that Ø behaves among sets (with
respect to the operations ∪ and ∩) very much as does the number zero
among numbers (with respect to the operation of addition and
multiplication).
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De Morgan’s Laws

Two particularly useful properties are given by De Morgan’s laws which
state that ( ∞⋃
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Venn Diagrams
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Introduction to Sets

Definition 1.

Let A and B be two sets. By the Cartesian product of A and B, denoted
by A× B, we shall mean the set {(a, b), a ∈ A, b ∈ B}, that is, the set of
all ordered pairs where the first element is taken from A and the second
from B.

Note: In general A× B 6= B × A.

The above notion can be extended as follows: If A1, . . . ,An are sets, then
A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ai ∈ Ai}, that is, the set of all
ordered n-tuples.

The Euclidean plane, R× R, where R is the set of all real numbers and
Euclidean 3-space represented as R× R× R.

Rn is the n-dimensional Euclidean space.
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Introduction to Sets

The number of elements in a set will be of considerable importance to
us. If there is a finite number of elements in A, say a1, a2, . . . , an, we say
that A is finite. If there is an infinite number of elements in A which may
be put into a one-to-one correspondence with the positive integers, we
say that A is countably or denumerably infinite. It can be shown for
example, that the set of all rational numbers is countably infinite.

Finally we must consider the case of a nondenumerable infinite set
(called an uncountable set). Such sets contain an infinite number of
elements which cannot be enumerated. It can be shown, for instance, that
for any two real numbers b > a, set A = {x : a ≤ x ≤ b} has a
nondenumerable number of elements. Since we may associate with each
real number a point on the real number line, the above says that any
(nondegenerate) interval contains more than a countable number of points.
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Examples of Nondeterministic Experiments

We are now ready to discuss what we mean by a “random” or
“nondeterministic” experiment. We shall give examples of phenomena for
which nondeterministic models are appropriate.

Thus we shall repeatedly refer to nondeterministic or random experiments
when in fact we are talking about a nondeterministic model for an
experiment. We shall not attempt to give a precise dictionary definition of
this concept. Instead, we shall cite a large number of examples.
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Examples of Nondeterministic Experiments

E1: Toss a die and observe the number that shows on top.

E2: Toss a coin four times and observe the total number of heads
obtained.

E3: Toss a coin four times and observe the sequence of heads and tails
obtained.
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Examples of Nondeterministic Experiments

E4: Manufacture items on a production line and count the number of
defective items produced during a 24-hour period.

E5: An airplane wing is assembled with a large number of rivets. The
number of defective rivets is counted.
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Examples of Nondeterministic Experiments

E6: A light bulb is manufactured. It is then tested for its life length
by inserting it into a socket and the time elapsed (in hours) until
it burns out is recorded.

E7: A lot of 10 items contains 3 defectives. One item is chosen after
another (without replacing the chosen item) until the last defective
item is obtained. The total number of items removed from the lot
is counted.

E8: Items are manufactured until 10 nondefective items are produced.
The total number of manufactured items is counted.
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Examples of Nondeterministic Experiments

E9: A missile is launched. At a specified time t, its three velocity
components, vx , vy , and vz are observed.

E10: A newly launched missile is observed at times, t1, t2, . . . , tn. At
each of these times the missile’s height above the ground is
recorded.
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Examples of Nondeterministic Experiments

E11: The tensile strength of a steel beam is measured.

E12: From an urn containing only black balls, a ball is chosen and its
color noted.
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Examples of Nondeterministic Experiments

E13: A thermograph records temperature, continuously, over a 24-hour
period. At a specified locality and on a specified date, such a
thermograph is “read.”

E14: In the situation described in E13, x and y , the minimum and maxi-
mum temperatures of the 24-hour period in question are recorded.
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Examples of Nondeterministic Experiments

What do the above experiments have in common? The following features
are pertinent for our characterization of a random experiment.

(a) Each experiment is capable of being repeated indefinitely under
essentially unchanged conditions.

(b) Although we are in general not able to state what a particular
outcome will be, we are able to describe the set of all possible
outcomes of the experiment.
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Examples of Nondeterministic Experiments

(c) As the experiment is performed repeatedly, the individual outcomes
seem to occur in a haphazard manner. However, as the experiment is
repeated a large number of times, a definite pattern or regularity
appears. It is this regularity which makes it possible to construct a
precise mathematical model with which to analyze the experiment.
We need only think of the repeated tossings of a fair coin. Although
heads and tails will appear, successively, in an almost arbitrary
fashion, it is a well-known empirical fact that after a large number of
tosses the proportion of heads and tails will be approximately equal.

Note that experiment E12 (from an urn containing only black balls, a ball
is chosen and its color noted) has the peculiar feature that only one
outcome is possible.
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Examples of Nondeterministic Experiments

In describing the various experiments we have specified not only the
procedure which is being performed but also what we are interested
in observing.

For example, there is a difference between E2 (toss a coin four times and
observe the total number of heads obtained) and E3 (toss a coin four
times and observe the sequence of heads and tails obtained). This is a
very important point to which we shall refer again later when discussing
random variables.
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Examples of Nondeterministic Experiments

Let us simply note that as a consequence of a single experimental
procedure or the occurrence of a single phenomenon, several different
numerical values could be computed.

For instance, if one person is chosen from a large group of persons (and
the actual choosing would be the experimental procedure previously
referred to), we might be interested in that person’s height, weight, annual
income, number of children, etc.

Of course in most situations we know before beginning our
experimentation just what numerical characteristic we are going to be
concerned about.
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The Sample Space

Definition 2.

With each experiment E of the type we are considering we define the
sample space as the set of all possible outcomes of E . We usually
designate this set by S which represents the universal set.

The sample space S is the set of all possible outcomes of an experiment.

Consider an experiment whose outcome is not predictable with certainty.
However, although the outcome of the experiment will not be known in
advance, let us suppose that the set of all possible outcomes is known.
This set of all possible outcomes of an experiment is known as the sample
space of the experiment and is denoted by S .
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Sample Space and Events

Some examples follow.

Example 3.

If the outcome of an experiment consists in the determination of the sex of
a newborn child, then S = {g , b}, where the outcome g means that the
child is a girl and b that it is a boy.

Example 4.

If the outcome of an experiment is the order of finish in a race among the
7 horses having post positions 1, 2, 3, 4, 5, 6, 7, then

S = {all 7! permutations of (1, 2, 3, 4, 5, 6, 7)}.

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2
horse comes in first, then the number 3 horse, then the number 1 horse,
and so on.
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Sample Space and Events

Example 5.

If the experiment consists of flipping two coins, then the sample space
consists of the following four points:

S = {(H,H), (H,T ), (T ,H), (T ,T )}.

The outcome will be (H,H) if both coins are heads, (H,T ) if the first coin
shows a head and the second shows a tail, (T ,H) if the first is a tail and
the second is a head, and (T ,T ) if both coins show tails.
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Sample Space and Events

Example 6.

If the experiment consists of tossing two dice, then the sample space
consists of the 36 points

S = {(i , j) : i , j = 1, 2, 3, 4, 5, 6}

where the outcome (i , j) is said to occur if i appears on the leftmost die
and j on the other die.
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Sample Space and Events

Example 7.

If the experiment consists of measuring (in hours) the lifetime of a
transistor, then the sample space consists of all nonnegative real numbers;
that is,

S = {x : 0 ≤ x <∞}.
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Sample Space and Events

Any subset E of the sample space is known as an event. In other
words, an event is a set consisting of possible outcomes of the experiment.
If the outcome of the experiment is contained in E , then we say that E
has occurred. Following are some examples of events.

In the preceding Example 3, if A = {g}, then A is the event that the child
is a girl. Similarly, if B = {b}, then B is the event that the child is a boy.
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Sample Space and Events

In Example 4, if

A = {all outcomes in S starting with a 3}

then A is the event that horse 3 wins the race.

In Example 5, if A = {(H,H), (H,T )}, then A is the event that a head
appears on the first coin.

In Example 6, if A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then A is
the event that the sum of the dice equals 7.

In Example 7, if A = {x : 0 ≤ x ≤ 5}, then A is the event that the
transistor does not last longer than 5 hours.
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Sample Space and Events

In Example 5, if A = {(H,H), (H,T )} and B = {(T ,H)}, then

A ∪ B = {(H,H), (H,T ), (T ,H)}.

Thus, A ∪ B would occur if a head appeared on either coin.

For instance, in Example 5, if A = {(H,H), (H,T ), (T ,H)} is the event
that at least 1 head occurs and B = {(H,T ), (T ,H), (T ,T )} is the event
that at least 1 tail occurs, then

A ∩ B = {(H,T ), (T ,H)}

is the event that exactly 1 head and 1 tail occur.
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Sample Space and Events

In Example 6, if A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} is the event
that the sum of the dice is 7 and B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} is
the event that the sum is 6, then the event A ∩ B does not contain any
outcomes and hence could not occur.

To give such an event a name, we shall refer to it as the null event and
denote it by Ø. (That is, Ø refers to the event consisting of no outcomes.)
If A ∩ B = Ø, then A and B are said to be mutually exclusive.
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Sample Space and Events

Ac will occur if and only if A does not occur. In Example 6, if event
A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then Ac will occur when the
sum of the dice does not equal 7.

Note that because the experiment must result in some outcome, it follows
that Sc = Ø.
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Sample Space and Events

For any two events A and B, if all of the outcomes in A are also in B, then
we say that A is contained in B, or A is a subset of B, and write A ⊂ B
(or equivalently, B ⊃ A, which we sometimes say as B is a superset of A).

Thus, if A ⊂ B, then the occurrence of A implies the occurrence of B. If
A ⊂ B and B ⊂ A, we say that A and B are equal and write A = B.
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Sample Space and Events

A graphical representation that is useful for illustrating logical relations
among events is the Venn diagram.

The sample space S is represented as consisting of all the outcomes in a
large rectangle, and the events E ,F ,G , . . . are represented as consisting of
all the outcomes in given circles within the rectangle.

Events of interest can then be indicated by shading appropriate regions of
the diagram.
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Sample Space and Events

The operations of forming unions, intersections, and complements of
events obey certain rules similar to the rules of algebra. We list a few of
these rules:

Commutative laws A ∪ B = B ∪ A A ∩ B = B ∩ A

Associative laws (A ∪ B) ∪ C = A ∪ (B ∪ C) (A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive laws (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

These relations are verified by showing that any outcome that is
contained in the event on the left side of the equality sign is also contained
in the event on the right side, and vice versa. One way of showing this is
by means of Venn diagrams.

Exercise 8.

Verify the distributive law by a sequence of Venn diagrams.
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Sample Space and Events

The following useful relationships between the three basic operations of
forming unions, intersections, and complements are known as De Morgan’s
laws: (

n⋃
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Exercise 9.

Prove De Morgan’s Laws.
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Sample Space and Events

Let us consider some experiments and describe a sample space for each.
The sample space Si will refer to the experiment Ei .

E1: Toss a die and observe the number that shows on top.
S1: {1, 2, 3, 4, 5, 6}.

E2: Toss a coin four times and observe the total number of heads
obtained.

S2: {0, 1, 2, 3, 4}.
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The Sample Space

E3: Toss a coin four times and observe the sequence of heads and
tails obtained.

S3: {all possible sequences of the form a1, a2, a3, a4, where each ai =
H orT depending on whether heads or tails appeared on the ith toss.}

E4: Manufacture items on a production line and count the number
of defective items produced during a 24-hour period.

S4: {0, 1, 2, . . . ,N}, where N is the maximum number that could
be produced in 24 hours.

E5: An airplane wing is assembled with a large number of rivets.
The number of defective rivets is counted.

S5: {0, 1, 2, . . . ,M}, where M is the number of rivets installed.
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The Sample Space

E6: A light bulb is manufactured. It is then tested for its life length
by inserting it into a socket and the time elapsed (in hours)
until it burns out is recorded.

S6: {t : t ≥ 0}.

E7: A lot of 10 items contains 3 defectives. One item is chosen
after another (without replacing the chosen item) until the last
defective item is obtained. The total number of items removed
from the lot is counted.

S7: {3, 4, 5, 6, 7, 8, 9, 10}.

E8: Items are manufactured until 10 nondefective items are pro-
duced. The total number of manufactured items is counted.

S8: {10, 11, 12, . . .}.
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The Sample Space

E9: A missile is launched. At a specified time t, its three velocity
components, vx , vy , and vz are observed.

S9: {(vx , vy , vz) : vx , vy , vz real numbers}.

S10: {(h1, . . . , hn) : hi ≥ 0, i = 1, 2, . . . , n}.
E10: A newly launched missile is observed at times, t1, t2, . . . , tn.

At each of these times the missile’s height above the ground is
recorded.

E11: The tensile strength of a steel beam is measured.
S11: {T : T ≥ 0}.

E12: From an urn containing only black balls, a ball is chosen and
its color noted.

S12: {black ball}.
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The Sample Space

E13: A thermograph records temperature, continuously, over a 24-
hour period. At a specified locality and on a specified date,
such a thermograph is “read.”

S13: This sample space is the most involved of those considered here.
We may realistically suppose that the temperature at a speci-
fied locality can never get above or below certain values, say M
and m. Beyond this restriction, we must allow the possibility
of any graph to appear with certain qualifications. Presum-
ably the graph will have no jumps (that is, it will represent a
continuous function). In addition, the graph will have certain
characteristics of smoothness which can be summarized math-
ematically by saying that the graph represents a differentiable
function. Thus we can finally state that the sample space is

{f : f a differentiable function, satisfying m ≤ f (t) ≤ M, all t}.
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The Sample Space

E14: In the situation described in E13, x and y , the minimum and
maximum temperatures of the 24-hour period in question are
recorded.

S14: {(x , y) : m ≤ x ≤ y ≤ M}. That is, S14 consists of all points
in and on a triangle in the two-dimensional x , y -plane.
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The Sample Space

We will not concern ourselves with sample spaces of the complexity
encountered in S13. However, such sample spaces do arise, but
require more advanced mathematics for their study than we are
presupposing.

In order to describe a sample space associated with an experiment,
we must have a very clear idea of what we are measuring or
observing. Hence we should speak of “a” sample space associated
with an experiment rather than “the” sample space. In this
connection note the difference between S2 and S3.
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The Sample Space

Note also that the outcome of an experiment need not be a number. For
example, in E3 each outcome is a sequence of H’s and T ’s. In E9 and E10

each outcome consists of a vector, while in E13 each outcome consists of a
function.

It will again be important to discuss the number of outcomes in a sample
space. Three possibilities arise: the sample space may be finite, countably
infinite, or noncountably infinite.

Referring to the above examples, we note that S1, S2, S3,S4, S5,S7, and
S12 are finite, S8 is countably infinite, and S6, S9,S10, S11,S13, and S14 are
noncountably infinite.
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The Sample Space

At this point it might be worth while to comment on the difference
between a mathematically “idealized” sample space and an experimentally
realizable one.

For this purpose, let us consider experiment E6 (A light bulb is
manufactured. It is then tested for its life length by inserting it into a
socket and the time elapsed (in hours) until it burns out is recorded) and
its associated sample space S6. It is clear that when we are actually
recording the total time t during which a bulb is functioning, we are
“victims” of the accuracy of our measuring instrument. Suppose that
we have an instrument which is capable of recording time to two decimal
places, for example, 16.43 hours. With this restriction imposed, our
sample space becomes countably infinite: {0.0, 0.01, 0.02, . . .}.
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The Sample Space

Furthermore, it is quite realistic to suppose that no bulb could possibly
last more than H hours, where H might be a very large number. Thus it
appears that if we are completely realistic about the description of this
sample space, we are actually dealing with a finite sample space:
{0.0, 0.01, 0.02, . . . ,H}. The total number of outcomes would be
(H/0.01) + 1, which would be a very large number if H is even moderately
large, for example, H = 100. It turns out to be far simpler and convenient,
mathematically, to assume that all values of t ≥ 0 are possible outcomes
and hence to deal with the sample space S6 as originally defined.

In view of the above comments, a number of the sample spaces described
are idealized. In all subsequent situations, the sample space considered will
be that one which is mathematically most convenient. In most problems,
little question arises as to the proper choice of sample space.
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Sample Spaces and Events

Every probabilistic model involves an underlying process, called the
experiment, that will produce exactly one out of several possible outcomes.
The set of all possible outcomes is called the sample space of the
experiment, and is denoted by S .

Another basic notion is the concept of an event. An event A (with respect
to a particular sample space S associated with an experiment E ) is simply
a set of possible outcomes. In set terminology, an event is a subset of the
sample space S .

S itself is an event and so is the empty set Ø. Any individual outcome
may also be viewed as an event.
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Sample Spaces and Events

Any collection of possible outcomes, including the entire sample space S
and its complement, the empty set Ø, may qualify as an event. Strictly
speaking, however, some sets have to be excluded.

In particular, when dealing with probabilistic models involving an
uncountably infinite sample space, there are certain unusual subsets
for which one cannot associate meaningful probabilities. This is an
intricate technical issue, involving the mathematics of measure
theory. Fortunately, such pathological subsets do not arise in the
problems considered in this course, and the issue can be safely
ignored.
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Sample Spaces and Events

There is no restriction on what constitutes an experiment. For example, it
could be a single toss of a coin, or three tosses, or an infinite sequence of
tosses. However, it is important to note that in our formulation of a
probabilistic model, there is only one experiment. So, three tosses of a
coin constitute a single experiment, rather than three experiments.

The sample space of an experiment may consist of a finite or an infinite
number of possible outcomes. Finite sample spaces are conceptually and
mathematically simpler. Still, sample spaces with an infinite number of
elements are quite common. As an example, consider throwing a dart on a
square target and viewing the point of impact as the outcome.
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Choosing an Appropriate Sample Space

Regardless of their number, different elements of the sample space should
be distinct and mutually exclusive, so that when the experiment is
carried out there is a unique outcome. For example, the sample space
associated with the roll of a die cannot contain “1 or 3” as a possible
outcome and also “1 or 4” as another possible outcome. If it did, we
would not be able to assign a unique outcome when the roll is a 1.

A given physical situation may be modeled in several different ways,
depending on the kind of questions that we are interested in. Generally,
the sample space chosen for a probabilistic model must be collectively
exhaustive, in the sense that no matter what happens in the experiment,
we always obtain an out come that has been included in the sample space.
In addition, the sample space should have enough detail to distinguish
between all outcomes of interest to the modeler, while avoiding irrelevant
details.
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Choosing an Appropriate Sample Space

Example 10.

Consider two alternative games, both involving ten successive coin tosses:
Game 1: We receive $1 each time a head comes up.
Game 2: We receive $1 for every coin toss, up to and including the first
time a head comes up. Then, we receive $2 for every coin toss, up to the
second time a head comes up. More generally, the dollar amount per toss
is doubled each time a head comes up.

In game 1, it is only the total number of heads in the ten-toss sequence
that maters. while in game 2, the order of heads and tails is also
important. Thus, in a probabilistic model for game 1, we can work with a
sample space consisting of eleven possible outcomes, namely,
{1, 2, . . . , 10}. In game 2, a finer grain description of the experiment is
called for, and it is more appropriate to let the sample space consist of
every possible ten-long sequence of heads and tails.
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Events

The following are some examples of events. Ai will refer to an event
associated with the experiment Ei .

E1: Toss a die and observe the number that shows on top.
A1: An even number occurs; that is, A1 = {2, 4, 6}.

E2: Toss a coin four times and observe the total number of heads
obtained.

A2: Two heads occur ; that is {2}.
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Events

E3: Toss a coin four times and observe the sequence of heads and
tails obtained.

A3: More heads than tails showed ; that is,
{HHHH,HHHT ,HHTH,HTHH,THHH}.

E4: Manufacture items on a production line and count the number
of defective items produced during a 24-hour period.

A4: All items were nondefective ; that is, {0}.

E5: An airplane wing is assembled with a large number of rivets.
The number of defective rivets is counted.

A5: More than two rivets were defective ; that is, {3, 4, . . . ,M}.
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Events

E6: A light bulb is manufactured. It is then tested for its life length
by inserting it into a socket and the time elapsed (in hours)
until it burns out is recorded.

A6: The bulb burns less than three hours ; that is, {t : t < 3}.

E14: A thermograph records temperature, continuously, over a 24-
hour period. At a specified locality and on a specified date, such
a thermograph is “read.” In the situation described above, x
and y , the minimum and maximum temperatures of the 24-
hour period in question are recorded.

A14 The maximum is 20◦ greater than the minimum ; that is,
{(x , y) : y = x + 20}.
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Sample Space and Events

When the sample space S is finite or countably infinite, every subset may
be considered as an event. If S has n members, there are exactly 2n

subsets (events).

However, if S is noncountably infinite, a theoretical difficulty arises.
It turns out that not every conceivable subset may be considered as
an event. Certain “nonadmissible” subsets must be excluded for
reasons which are beyond the level of this presentation.

Fortunately such nonadmissible sets do not really arise in applications and
hence will not concern us here. In all that follows it will be tacitly assumed
that whenever we speak of an event it will be of the kind we are allowed to
consider.
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Sample Space and Events

We can now use the various methods of combining sets (that is, events)
and obtain the new sets (that is, events).

(a) If A and B are events, A ∪ B is the event which occurs if and only if
A or B (or both) occur.

(b) If A and B are events, A ∩ B is the event which occurs if and only if
A and B occur.

(c) If A is an event, Ā is the event which occurs if and only if A does not
occur.

(d) If A1, . . . ,An is any finite collection of events, then ∪ni=1Ai is the
event which occurs if and only if at least one of the events Ai occurs.

(e) If A1, . . . ,An is any finite collection of events, then ∩ni=1Ai is the
event which occurs if and only if all the events Ai occur.
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Sample Space and Events

(f) If A1, . . . ,An, . . . is any (countably) infinite collection of events, then
∪∞i=1Ai is the event which occurs if and only if at least one of the
events Ai occur.

(h) Suppose that S represents the sample space associated with some
experiment E and we perform E twice. Then S × S may be used to
represent all outcomes of these two repetitions. That is,
(s1, s2) ∈ S × S means that s1 resulted when E was performed the
first time and s2 when E was performed the second time.

(i) The example in (h) may obviously be generalized. Consider n
repetitions of an experiment E whose sample space is S . Then
S × S × · · · × S = {(s1, s2, . . . , sn) : si ∈ S , i = 1, . . . , n} represents
the set of all possible outcomes when E is performed n times. In a
sense, S × S × · · · × S is a sample space itself, namely the sample
space associated with n repetitions of E .

P. Sam Johnson Introduction to Probability 67/106



Sample Space and Events

Definition 11.

Two events, A and B, are said to be mutually exclusive if they cannot
occur together. We express this by writing A ∩ B = Ø; that is, the
intersection of A and B is the empty set.

One of the basic characteristics of the concept of “experiment” is that we
do not know which particular outcome will occur when the experiment is
performed. Saying it differently, if A is an event associated with the
experiment, then we cannot state with certainty that A will or will not
occur. Hence it becomes very important to try to associate a
number with the event A which will measure, in some sense, how
likely it is that the event A occurs. This task leads us to the theory
of probability.
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Relative Frequency

One way of defining the probability of an event is in terms of its relative
frequency. Such a definition usually goes as follows: We suppose that an
experiment, whose sample space is S , is repeatedly performed under
exactly the same conditions. For each event A of the sample space S , we
define n(A) to be the number of times in the first n repetitions of the
experiment that the event A occurs. Then P(A), the probability of the
event A, is defined as

P(A) = lim
n→∞

n(A)

n
.

The null event has probability 0 of occurring.
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Relative Frequency

Suppose that we repeat the experiment E n times and let A and B be two
events associated with E . We let n(A) and n(B) be the number of times
that the event A and the event B occurred among the n repetitions,
respectively.

Definition 12.

fA = n(A)/n is called the relative frequency of the event A in the n
repetitions of E . The relative frequency fA has the following important
properties, which are easily verified.

(1) 0 ≤ fA ≤ 1.

(2) fA = 1 if and only if A occurs every time among the n repetitions.

(3) fA = 0 if and only if A never occurs among the n repetitions.
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Relative Frequency

(4) If A and B are two mutually exclusive events and if fA∪B is the relative
frequency associated with the event A ∪ B, then fA∪B = fA + fB .

(5) fA, based on n repetitions of the experiment and considered as a
function of n, “converges” in a certain probabilistic sense to P(A)
as n→∞.

Let us simply state that Property (5) involves the fairly intuitive
notion that the relative frequency based on an increasing number of
observations tends to “stabilize” near some definite value. This is
not the same as the usual concept of convergence encountered
elsewhere in mathematics. In fact, as stated here, this is not a
mathematical conclusion at all but simply an empirical fact.
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Relative Frequency

Most of us are intuitively aware of this phenomenon of stabilization
although we may never have checked on it. To do so requires a
considerable amount of time and patience, since it involves a large
number of repetitions of an experiment.

However, sometimes we may be innocent observers of this phenomenon as
the following example illustrates.
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Relative Frequency

Example 13.

Suppose that we are standing on a sidewalk and fix our attention on two
adjacent slabs of concrete. Assume that it begins to rain in such a manner
that we are actually able to distinguish individual raindrops and keep track
of whether these drops land on one slab or the other. We continue to
observe individual drops and note their point of impact.
Denoting the ith drop by Xi , where Xi = I if the drop lands on one slab
and 0 if it lands on the other slab, we might observe a sequence such as
1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1.
Now it is clear that we are not able to predict where a particular drop will
fall. (Our experiment consists of some sort of meteorological situation
causing the release of raindrops.)
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Example (contd...)

If we compute the relative frequency of the event
A = {the drop lands on slab I}, then the above sequence of outcomes
gives rise to the following relative frequencies (based on the observance of
1, 2, 3, . . . drops) :

1,
2

2
,

2

3
,

3

4
,

3

5
,

3

6
,

3

7
,

4

8
,

4

9
,

4

10
,

5

11
, · · ·

These numbers show a considerable degree of variation, particularly
at the beginning. It is intuitively clear that if the above experiment
were continued indefinitely, these relative frequencies would
stabilize near the value 1

2 . For we have every reason to believe that
after some time had elapsed the two slabs would be equally wet.
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Example (contd...)

The essence of this property is that if an experiment is performed a large
number of times, the relative frequency of occurrence of some event A
tends to vary less and less as the number of repetitions is increased. This
characteristic is also referred to as statistical regularity.

We have also been somewhat vague in our definition of experiment. Just
when is a procedure or mechanism an experiment in our sense, capable of
being studied mathematically by means of a nondeterministic model?

We have stated previously that an experiment must be capable of being
performed repeatedly under essentially unchanged conditions. We can now
add another requirement. When the experiment is performed repeatedly it
must exhibit the statistical regularity referred to above. Later we shall
discuss a theorem (called the Law of Large Numbers) which shows that
statistical regularity is in fact a consequence of the first requirement:
repeatability.
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Basic Notions of Probability

To assign a number to each event A which will measure how likely it is
that A occurs when the experiment is performed. One possible approach
might be the following one: Repeat the experiment a large number of
times, compute the relative frequency fA, and use this number. When we
recall the properties of fA, it is clear that this number does give a very
definite indication of how likely it is that A occurs. Furthermore, we know
that as the experiment is repeated more and more times, the relative
frequency fA stabilizes near some number, say p. However, there are two
serious objections to this approach. (a) It is not clear how large n should
be before we know the number. 1000? 2000? 10, 000? (b) Once the
experiment has been completely described and the event A specified, the
number we are seeking should not depend on the experimenter or the
particular streak of luck which he experiences.
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Basic Notions of Probability

For example, it is possible for a perfectly balanced coin, when tossed 10
times, to come up with 9 heads and 1 tail. The relative frequency of the
event A{heads occur} thus equals 9

10 . Yet it is clear that on the next 10
tosses the pattern of heads and tails might be reversed.

What we want is a means of obtaining such a number without resorting to
experimentation. Of course, for the number we stipulate to be meaningful,
any subsequent experimentation should yield a relative frequency which is
“close” to the stipulated value, particularly if the number of repetitions on
which the computed relative frequency is based is quite large. We proceed
formally as follows.
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Elements of a Probabilistic Model

The main ingredients of a probabilistic model are given as follows.

The sample space Ω, which is the set of all possible outcomes of an
experiment.
The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the
probability of A) that encodes our knowledge or belief about the
collective “likelihood” of the elements of A. The probability law must
satisfy certain properties to be introduced shortly.
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Basic Notions of Probability

Definition 14.

Let E be an experiment. Let S be a sample space associated with E .
With each event A we associate a real number, designated by P(A) and
called the probability of A satisfying the following axioms (called
Probability Axioms):

1. (Nonnegativity) P(A) ≥ 0, for every event A.

2. (Additivity) If A and B are mutually exclusive events (Ai ∩ Aj = Ø
when i 6= j), P(A ∪ B) = P(A) + P(B).
More generally, if the sample space has an infinite number of
elements and A1,A2, . . . ,An, . . . is a sequence of pairwise mutually
exclusive events (Ai ∩ Aj = Ø when i 6= j), then

P(∪∞i=1Ai ) = P(A1) + P(A2) + · · ·+ P(Ai ) + · · ·

3. (Normalization) The probability of the entire sample space S is
equal to 1, that is, P(S) = 1.
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Basic Notions of Probability

The assumption of the existence of a set function P, defined on the events
of a sample space S and satisfying Axioms 1, 2, and 3, constitutes the
modern mathematical approach to probability theory.

Hopefully, we will agree that the axioms are natural and in accordance with
our intuitive concept of probability as related to chance and randomness.

Furthermore, using these axioms we shall be able to prove that if an
experiment is repeated over and over again, then the proportion of time
during which any specific event A occurs will equal P(A). This result,
known as the strong law of large numbers. In addition, we discuss another
possible interpretation of probability – as being a measure of belief.

P. Sam Johnson Introduction to Probability 80/106



Technical Remark

We have supposed that P(A) is defined for all the events A of the sample
space.

Actually, when the sample space is an uncountably infinite set, P(A)
is defined only for a class of events called measurable. However,
this restriction need not concern us, as all events of any practical
interest are measurable.

For instance, if the probability of obtaining a head on the toss of a coin is
3
8 , then the probability of obtaining a tail must be 5

8 . If the event A is
contained in the event B, then the probability of A is no greater than the
probability of B.
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Sample Space and Events

Example 15.

If our experiment consists of tossing a coin and if we assume that a head
is as likely to appear as a tail, then we would have

P({H}) = P({T}) =
1

2
.

On the other hand, if the coin were biased and we felt that a head were
twice as likely to appear as a tail, then we would have

P({H}) =
2

3
P({T}) =

1

3
.
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Sample Space and Events

Example 16.

If a die is rolled and we suppose that all six sides are equally likely to
appear, then we would have

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) =
1

6
.

From Axiom 2, it would thus follow that the probability of rolling an even
number would equal

P({2, 4, 6}) = P({2}) + P({4}) + P({6}) =
1

2
.
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Basic Notions of Probability

We note that from Axiom 3 it immediately follows that for any finite n,

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai ).

We shall show that the numbers P(A) and fA are “close” to each other (in
a certain sense), if fA is based on a large number of repetitions. It is this
fact which gives us the justification to use P(A) for measuring how
probable it is that A occurs.
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Basic Notions of Probability

Before discussing how to evaluate P(A), we prove several consequences
concerning P(A) which follow from the above conditions, and which do
not depend on how we actually compute P(A).

Theorem 17.

If Ø is the empty set, then P(Ø) = 0.

Proof: We may write, for any event A,A = A ∪Ø. Since A and Ø are
mutually exclusive, it follows from Axiom 2 that
P(A) = P(A ∪Ø) = P(A) + P(Ø). From this the conclusion of the
theorem is immediate.

Note : The converse of the above theorem is not true. That is, if
P(A) = 0, we cannot in general conclude that A = Ø, for there are
situations in which we assign probability zero to an event that can occur.
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Zero Probability

A continuous sample space : Consider a probabilistic experiment whose
set of possible outcomes, called sample space and denoted by S , is the
unit interval [0, 1].

It is possible to assign probabilities in such a way that each sub-interval
has probability equal to its length. The proof that such an assignment of
probabilities can be consistently performed is beyond the scope of this
example, but you can find it in any elementary measure theory book.
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All the possible outcomes have zero probability

As a direct consequence of this assignment, all the possible outcomes
s ∈ S have zero probability. Stated differently, every possible outcome is a
zero-probability event.

This might seem counterintuitive. In everyday language, a zero-probability
event is an event that never happens. However, this example illustrates
that a zero-probability event can indeed happen.

Since the sample space provides an exhaustive description of the possible
outcomes, one and only one of the sample points s ∈ S will be the realized
outcome.

But we have just demonstrated that all the sample points are
zero-probability events: as a consequence, the realized outcome can only
be a zero-probability event.
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Another counter-intuitive property

Another apparently paradoxical aspect of this probability model is that the
sample space S can be obtained as the union of disjoint zero-probability
events:

S =
⋃
s∈S

s

where each s ∈ S is a zero-probability event and all events in the union are
disjoint.

If we forgot that the additivity property of probability applies only
to countable collections of subsets, we would mistakenly deduce that

P(S) = 0

and we would come to a contradiction: P(S) = 0, when, by the properties
of probability, it should be P(S) = 1.

Of course, the fallacy in such an argument is that S is not a countable set
and, hence, the additivity property cannot be used.
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Basic Notions of Probability

Theorem 18.

If Ā is the complementary event of A, then

P(A) = 1− P(Ā).

Proof: We may write S = A ∪ Ā and, using Axioms 2 and 3, we obtain
1 = P(A) + P(Ā).

In words, Theorem 18 states that the probability that an event does
not occur is 1 minus the probability that it does occur. For instance,
if the probability of obtaining a head on the toss of a coin is 3/8, then
the probability of obtaining a tail must be 5/8.

This is a particularly useful result, for it means that whenever we wish
to evaluate P(A) we may instead compute P(Ā) and then obtain the
desired result by subtraction. We shall see later that in many
problems it is much easier to compute P(Ā) than P(A).

P. Sam Johnson Introduction to Probability 89/106



Basic Notions of Probability

This result may be established easily by using mathematical induction.

Theorem 19.

If A ⊂ B, then P(A) ≤ P(B).

Proof: We may decompose B into two mutually exclusive events as
follows: B = A ∪ (B ∩ Ā). Hence P(B) = P(A) + P(B ∩ Ā) ≥ P(A), since
P(B ∩ Ā) ≥ 0 from Property 1.

This result certainly is intuitively appealing. For it says that if B must
occur whenever A occurs, then B is at least as probable as A. That
is, it states that if the event A is contained in the event B, then the
probability of A is no greater than the probability of B.

Theorem 19 tells us, for instance, that the probability of rolling a 1
with a die is less than or equal to the probability of rolling an odd
value with the die.
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Basic Notions of Probability

Theorem 20.

If A and B are any two events, then

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Proof: The idea of this proof is to decompose A ∪ B and B into mutually
exclusive events and then to apply Axiom 2. (See the Venn diagram in the
above figure.) Thus we write

A ∪ B = A ∪ (B ∩ Ā),

B = (A ∩ B) ∪ (B ∩ Ā).
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Proof (contd...)

Hence

P(A ∪ B) = P(A) + P(B ∩ Ā),

P(B) = P(A ∩ B) + P(B ∩ Ā).

Subtracting the second equation from the first yields

P(A ∪ B)− P(B) = P(A)− P(A ∩ B)

and hence the result follows.

Note : This theorem represents an obvious extension of Axiom 2, for if
A ∩ B = Ø, we obtain from the above the statement of Axiom 2.

P. Sam Johnson Introduction to Probability 92/106



Example

Example 21.

J is taking two books along on her holiday vacation. With probability 0.5,
she will like the first book; with probability 0.4, she will like the second
book; and with probability 0.3, she will like both books. What is the
probability that she likes neither book?
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Solution

Let Bi denote the event that J likes book i , i = 1, 2. Then the probability
that she likes at least one of the books is

P(B1 ∪ B2) = P(B1) + P(B2)− P(B1 ∩ B2) = 0.5 + 0.4− 0.3 = 0.6.

Because the event that J likes neither book is the complement of the
event that she likes at least one of them, we obtain the result

P(Bc
1 ∩ Bc

2 ) = P((B1 ∪ B2)c) = 1− P(B1 ∪ B2) = 0.4.
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Basic Notions of Probability

Theorem 22.

If A,B, and C are any three events, then

P(A ∪ B ∪ C ) = P(A) + P(B) + P(C )− P(A ∩ B)− P(A ∩ C )

−P(B ∩ C ) + P(A ∩ B ∩ C ).

Proof : The proof consists of writing A ∪ B ∪ C as (A ∪ B) ∪ C and
applying the result of the above theorem.

Theorem 23.

Let A1, . . . ,Ak be any k events. Then

P(A1 ∪ A2 ∪ · · · ∪ Ak ) =
k∑

i=1

P(Ai )−
k∑

i<j=2

P(Ai ∩ Aj ) +
k∑

i<j<r=3

P(Ai ∩ Aj ∩ Ar ) + · · ·

+(−1)k−1P(A1 ∩ A2 ∩ · · · ∩ Ak ).
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Inclusion-Exclusion Identity

The above theorem, known as the inclusion-exclusion identity, can be
proved by mathematical induction.

The summation ∑
i1<i2<···<ir

P(Ai1 ∩ Ai2 ∩ . . . ∩ Air )

is taken over all of the
(n
r

)
possible subsets of size r of the set {1, 2, . . . , n}.

In words, Theorem 23 states that the probability of the union of n events
equals the sum of the probabilities of these events taken one at a time,
minus the sum of the probabilities of these events taken two at a time,
plus the sum of the probabilities of these events taken three at a time, and
so on.

Note: Noninductive argument for Theorem 23 is available in the book by
Sheldon Ross.
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Inclusion-Exclusion Identity

The following is a succinct way of writing the inclusion-exclusion identity:

P(∪ni=1Ai ) =
n∑

r=1

(−1)r+1
∑

i1<···<ir

P(Ai1 ∩ · · · ∩ Air ).

In the inclusion-exclusion identity, going out one term results in an upper
bound on the probability of the union, going out two terms results in a
lower bound on the probability, going out three terms results in an upper
bound on the probability, going out four terms results in a lower bound,
and so on.
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Inclusion-Exclusion Identity

That is, for events A1, . . . ,An, we have

P(∪ni=1Ai ) ≤
n∑

i=1

P(Ai ) (1)

P(∪ni=1Ai ) ≥
n∑

i=1

P(Ai )−
∑
j<i

P(Ai ∩ Aj) (2)

P(∪ni=1Ai ) ≤
n∑

i=1

P(Ai )−
∑
j<i

P(Ai ∩ Aj) +
∑

k<j<i

P(Ai ∩ Aj ∩ Ak) (3)

and so on.

Exercise 24.

Prove the above inequalities.
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Inclusion-Exclusion Identity

Notation : We say AB for A ∩ B when A and B are two events.

To prove the validity of these bounds, note the identity

∪ni=1Ai = A1 ∪ Ac
1A2 ∪ Ac

1A
c
2A3 ∪ · · · ∪ Ac

1 · · ·Ac
n−1An.

That is, at least one of the events Ai occurs if A1 occurs, or if A1 does not occur but A2 does,
or if A1 and A2 do not occur but A3 does, and so on. Because the right-hand side is the union
of disjoint events, we obtain

P(∪ni=1Ai ) = P(A1) + P(Ac
1A2) + P(Ac

1A
c
2A3) + · · ·+ P(Ac

1 · · ·Ac
n−1An)

= P(A1) +
n∑

i=2

P(Ac
1 · · ·Ac

i−1Ai ). (4)

Now, let Bi = Ac
1 · · ·Ac

i−1 = (∪j<iAj )
c be the event that none of the first i − 1 events occur.
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Inclusion-Exclusion Identity

Applying the identity

P(Ai ) = P(BiAi ) + P(Bc
i Ai )

shows that

P(Ai ) = P(Ac
1 · · ·Ac

i−1Ai ) + P(Ai ∪j<i Aj )

or, equivalently,

P(Ac
1 · · ·Ac

i−1Ai ) = P(Ai )− P(∪j<iAiAj ). (5)

Substituting this equation into (4.4) yields

P(∪ni=1Ai ) =
∑
i

P(Ai )−
∑
i

P(∪j<iAiAj ).
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Inclusion-Exclusion Identity

Because probabilities are always nonnegative, Inequality (1) follows directly from Equation (5).
Now, fixing i and applying Inequality (1) to P(∪j<iAiAj ) yields

P(∪j<iAiAj ) ≤
∑
j<i

P(AiAj )

which, by Equation (5), gives Inequality (2). Similarly, fixing i and applying Inequality (2) to
P(∪j<iAiAj ) yields

P(∪j<iAiAj ) ≥
∑
j<i

P(AiAj )−
∑

k<j<i

P(AiAjAiAk )

=
∑
j<i

P(AiAj )−
∑

k<j<i

P(AiAjAk )

which, by Equation (5), gives Inequality (3). The next inclusion-exclusion inequality is now

obtained by fixing i and applying Inequality (3) to P(∪j<iAiAj ), and so on.
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Continuity Property of Probabilities

(a) Let A1,A2, . . . be an infinite sequence of events, which is “monotonically increasing”,
meaning that An ⊂ An+1 for every n. Let A = U∞n=1An. Show that
P(A) = limn→∞ P(An). Hint: Express the event A as a union of countably many disjoint
sets.

(b) Suppose now that the events are “monotonically decreasing”, i.e., An+1 ⊂ An for every n.
Let A = ∩∞n=1An. Show that P(A) = limn→∞ P(An). Hint: Apply the result of part (a) to
the complements of the events.

(c) Consider a probabilistic model whose sample space is the real line. Show that

P([0,∞)) = lim
n→∞

P([0, n]), and lim
n→∞

P([n,∞)) = 0.

Proof of (c) : For the first equality, use the result from part (a) with An = [0, n] and A = [0,∞).

For the second, use the result from part (b) with An = [n,∞) and A = ∩∞n=1An = Ø.
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Bonferroni’s Inequality

Exercises 25.
(a) Prove that for any two events A and B, we have

P(A ∩ B) ≥ P(A) + P(B)− 1.

(b) Generalize to the case of n events A1,A2, . . . ,An, by showing that

P(A1 ∩ A2 ∩ · · · ∩ An) ≥ P(A1) + P(A2) + · · ·+ P(An)− (n − 1).

Solution. We have P(A∪B) = P(A) + P(B)−P(A∩B) and P(A∪B) ≤ 1. which implies part
(a). For part (b), we use De Morgan’s law to obtain

1− P(A1 ∩ · · · ∩ An) = P((A1 ∩ . . . ∩ An)c )

= P(Ac
1 ∪ . . . ∪ Ac

n)

≤ P(Ac
1) + · · ·+ P(Ac

n)

= (1− P(A1)) + · · ·+ (1− P(An))

= n − P(A1)− · · · − P(An).
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Exercises

Exercises 26.
1. A partition of the sample space Ω is a collection of disjoint events S1, . . . ,Sn such that

Ω = Un
i=1Si .

(a) Show that for any event A, we have

P(A) =
n∑

i=1

P(A ∩ Si ).

(b) Use part (a) to show that for any events A, B, and C , we have

P(A) = P(A ∩ B) + P(A ∩ C ) + P(A ∩ Bc ∩ C c)− P(A ∩ B ∩ C ).

2. Show the formula

P((A ∩ Bc ) ∪ (Ac ∩ B)) = P(A) + P(B)− 2P(A ∩ B),

which gives the probability that exactly one of the events A and B will occur. [Compare
with the formula P(A ∪ B) = P(A) + P(B)− P(A ∩ B), which gives the probability that
at least one of the events A and B will occur.]
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Summary of Counting Results

Here is a summary of all the counting results we have developed.

Permutations of n objects: n!.

k-permutations of n objects: n!/(n − k)!.

Combinations of k out of n objects:
(n
k

)
= n!

k!(n−k)! .

Partitions of n objects into r groups, with the ith group having ni
objects: (

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · · nr !
.
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